Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Mol Neurobiol ; 61(3): 1237-1270, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37698833

RESUMEN

A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.


Asunto(s)
Productos Biológicos , Enfermedad de Huntington , Fármacos Neuroprotectores , Ratas , Animales , Enfermedad de Huntington/metabolismo , Ratas Wistar , Acetilcolinesterasa , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Productos Biológicos/uso terapéutico , Nitrocompuestos/farmacología , Propionatos/farmacología , Propionatos/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad
3.
Curr Neuropharmacol ; 21(5): 1081-1099, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36927428

RESUMEN

Mitochondria are critical for homeostasis and metabolism in all cellular eukaryotes. Brain mitochondria are the primary source of fuel that supports many brain functions, including intracellular energy supply, cellular calcium regulation, regulation of limited cellular oxidative capacity, and control of cell death. Much evidence suggests that mitochondria play a central role in neurodegenerative disorders (NDDs) such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Ongoing studies of NDDs have revealed that mitochondrial pathology is mainly found in inherited or irregular NDDs and is thought to be associated with the pathophysiological cycle of these disorders. Typical mitochondrial disturbances in NDDs include increased free radical production, decreased ATP synthesis, alterations in mitochondrial permeability, and mitochondrial DNA damage. The main objective of this review is to highlight the basic mitochondrial problems that occur in NDDs and discuss the use mitochondrial drugs, especially mitochondrial antioxidants, mitochondrial permeability transition blockade, and mitochondrial gene therapy, for the treatment and control of NDDs.


Asunto(s)
Enfermedades Mitocondriales , Enfermedades Neurodegenerativas , Humanos , Estrés Oxidativo/fisiología , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , ADN Mitocondrial/metabolismo , ADN Mitocondrial/uso terapéutico
4.
Curr Top Med Chem ; 23(14): 1380-1393, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36650651

RESUMEN

Food color additives are used to make food more appetizing. The United States Food and Drug Administration (FDA) permitted nine artificial colorings in foods, drugs, and cosmetics, whereas the European Union (EU) approved five artificial colors (E-104, 122, 124, 131, and 142) for food. However, these synthetic coloring materials raise various health hazards. The present review aimed to summarize the toxic effects of these coloring food additives on the brain, liver, kidney, lungs, urinary bladder, and thyroid gland. In this respect, we aimed to highlight the scientific evidence and the crucial need to assess potential health hazards of all colors used in food on human and nonhuman biota for better scrutiny. Blue 1 causes kidney tumor in mice, and there is evidence of death due to ingestion through a feeding tube. Blue 2 and Citrus Red 2 cause brain and urinary bladder tumors, respectively, whereas other coloring additives may cause different types of cancers and numerous adverse health effects. In light of this, this review focuses on the different possible adverse health effects caused by these food coloring additives, and possible ways to mitigate or avoid the damage they may cause. We hope that the data collected from in vitro or in vivo studies and from clinical investigations related to the possible health hazards of food color additives will be helpful to both researchers and the food industry in the future.


Asunto(s)
Colorantes de Alimentos , Animales , Humanos , Ratones , Aditivos Alimentarios/efectos adversos , Colorantes de Alimentos/efectos adversos , Hígado , Estados Unidos , United States Food and Drug Administration
5.
Artículo en Inglés | MEDLINE | ID: mdl-35507780

RESUMEN

G-protein-coupled receptors (GPCRs) are activated by manifold neurotransmitters, and their activation, in turn, evokes slow synaptic transmission. They are profoundly related to numerous psychiatric and neurological disorders such as schizophrenia and Parkinson's disease. The significant malady indications for GPCR modulators demonstrate a change towards obesity, diabetes, and Alzheimer's disease, while other central nervous system disorders persist highly represented. GPR52, GPR6, and GPR8 are recognised as orphan GPCRs, co-exist either with both the dopamine D2 and D1 receptors in neurons of the basal ganglia or with the dopamine D2 receptor alone, and recommend that between these orphan receptors, GPR52 has the maximum potential of being a therapeutic psychiatric receptor. Genetically modified creature models and molecular biological investigations have suggested that these improved GPCRs could be potential therapeutic psychiatric receptors. In this perspective, the role of molecular targets in GPCR-mediated signalling has been discussed that would be novel drug design and discovery options for a scientist to elaborate previous knowledge with modern techniques.


Asunto(s)
Proteínas de Unión al GTP , Enfermedades del Sistema Nervioso , Humanos
6.
Front Cell Infect Microbiol ; 12: 929430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072227

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a substantial number of deaths around the world, making it a serious and pressing public health hazard. Phytochemicals could thus provide a rich source of potent and safer anti-SARS-CoV-2 drugs. The absence of approved treatments or vaccinations continues to be an issue, forcing the creation of new medicines. Computer-aided drug design has helped to speed up the drug research and development process by decreasing costs and time. Natural compounds like terpenoids, alkaloids, polyphenols, and flavonoid derivatives have a perfect impact against viral replication and facilitate future studies in novel drug discovery. This would be more effective if collaboration took place between governments, researchers, clinicians, and traditional medicine practitioners' safe and effective therapeutic research. Through a computational approach, this study aims to contribute to the development of effective treatment methods by examining the mechanisms relating to the binding and subsequent inhibition of SARS-CoV-2 ribonucleic acid (RNA)-dependent RNA polymerase (RdRp). The in silico method has also been employed to determine the most effective drug among the mentioned compound and their aquatic, nonaquatic, and pharmacokinetics' data have been analyzed. The highest binding energy has been reported -11.4 kcal/mol against SARS-CoV-2 main protease (7MBG) in L05. Besides, all the ligands are non-carcinogenic, excluding L04, and have good water solubility and no AMES toxicity. The discovery of preclinical drug candidate molecules and the structural elucidation of pharmacological therapeutic targets have expedited both structure-based and ligand-based drug design. This review article will assist physicians and researchers in realizing the enormous potential of computer-aided drug design in the design and discovery of therapeutic molecules, and hence in the treatment of deadly diseases.


Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Diseño de Fármacos , Humanos , SARS-CoV-2 , Replicación Viral
7.
Front Cell Infect Microbiol ; 12: 903570, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795187

RESUMEN

In the last two decades, considerable interest has been shown in understanding the development of the gut microbiota and its internal and external effects on the intestine, as well as the risk factors for cardiovascular diseases (CVDs) such as metabolic syndrome. The intestinal microbiota plays a pivotal role in human health and disease. Recent studies revealed that the gut microbiota can affect the host body. CVDs are a leading cause of morbidity and mortality, and patients favor death over chronic kidney disease. For the function of gut microbiota in the host, molecules have to penetrate the intestinal epithelium or the surface cells of the host. Gut microbiota can utilize trimethylamine, N-oxide, short-chain fatty acids, and primary and secondary bile acid pathways. By affecting these living cells, the gut microbiota can cause heart failure, atherosclerosis, hypertension, myocardial fibrosis, myocardial infarction, and coronary artery disease. Previous studies of the gut microbiota and its relation to stroke pathogenesis and its consequences can provide new therapeutic prospects. This review highlights the interplay between the microbiota and its metabolites and addresses related interventions for the treatment of CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Hipertensión , Síndrome Metabólico , Microbiota , Humanos
8.
Cytokine ; 157: 155962, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35853395

RESUMEN

Considerable evidence supports that cytokines are important mediators of pathophysiologic processes within the central nervous system (CNS). Numerous studies have documented the increased production of various cytokines in the human CNS in various neurological and neuropsychiatric disorders. Deciphering cytokine actions in the intact CNS has important implications for our understanding of the pathogenesis and treatment of these disorders. The purpose of this study is to discuss the recent research on treating cytokine storm and amyloids, including stroke, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's condition, Multi-sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS). Neuroinflammation observed in neurological disorders has a pivotal role in exacerbating Aß burden and tau hyperphosphorylation, suggesting that stimulating cytokines in response to an undesirable external response could be a checkpoint for treating neurological disorders. Furthermore, the pro-inflammatory cytokines help our immune system through a neuroprotective mechanism in clearing viral infection by recruiting mononuclear cells. This study reveals that cytokine applications may play a vital role in providing novel regulation and methods for the therapeutic approach to neurological disorders and the causes of the deregulation, which is responsible for neuroinflammation and viral infection. However, it needs to be further investigated to clarify better the mechanisms of cytokine release in response to various stimuli, which could be the central point for treating neurological disorders.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades del Sistema Nervioso , Virosis , Citocinas/fisiología , Humanos , Enfermedades del Sistema Nervioso/terapia , Enfermedades Neuroinflamatorias
9.
Environ Sci Pollut Res Int ; 29(31): 46527-46550, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35507224

RESUMEN

COVID-19, which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread over the world, posing a global health concern. The ongoing epidemic has necessitated the development of novel drugs and potential therapies for patients infected with SARS-CoV-2. Advances in vaccination and medication development, no preventative vaccinations, or viable therapeutics against SARS-CoV-2 infection have been developed to date. As a result, additional research is needed in order to find a long-term solution to this devastating condition. Clinical studies are being conducted to determine the efficacy of bioactive compounds retrieved or synthesized from marine species starting material. The present study focuses on the anti-SARS-CoV-2 potential of marine-derived phytochemicals, which has been investigated utilizing in in silico, in vitro, and in vivo models to determine their effectiveness. Marine-derived biologically active substances, such as flavonoids, tannins, alkaloids, terpenoids, peptides, lectins, polysaccharides, and lipids, can affect SARS-CoV-2 during the viral particle's penetration and entry into the cell, replication of the viral nucleic acid, and virion release from the cell; they can also act on the host's cellular targets. COVID-19 has been proven to be resistant to several contaminants produced from marine resources. This paper gives an overview and summary of the various marine resources as marine drugs and their potential for treating SARS-CoV-2. We discussed at numerous natural compounds as marine drugs generated from natural sources for treating COVID-19 and controlling the current pandemic scenario.


Asunto(s)
COVID-19 , Antivirales/química , Humanos , Pandemias , SARS-CoV-2
10.
Antibiotics (Basel) ; 11(5)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35625311

RESUMEN

Antimicrobials are a type of agent widely used to prevent various microbial infections in humans and animals. Antimicrobial resistance is a major cause of clinical antimicrobial therapy failure, and it has become a major public health concern around the world. Increasing the development of multiple antimicrobials has become available for humans and animals with no appropriate guidance. As a result, inappropriate use of antimicrobials has significantly produced antimicrobial resistance. However, an increasing number of infections such as sepsis are untreatable due to this antimicrobial resistance. In either case, life-saving drugs are rendered ineffective in most cases. The actual causes of antimicrobial resistance are complex and versatile. A lack of adequate health services, unoptimized use of antimicrobials in humans and animals, poor water and sanitation systems, wide gaps in access and research and development in healthcare technologies, and environmental pollution have vital impacts on antimicrobial resistance. This current review will highlight the natural history and basics of the development of antimicrobials, the relationship between antimicrobial use in humans and antimicrobial use in animals, the simplistic pathways, and mechanisms of antimicrobial resistance, and how to control the spread of this resistance.

12.
Curr Pharm Des ; 28(16): 1304-1320, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35418280

RESUMEN

Diabetes mellitus is a metabolic condition that influences the endocrine framework. Hyperglycemia and hyperlipidemia are two of the most widely recognized metabolic irregularities in diabetes and two of the most well-known reasons for diabetic intricacies. Diabetes mellitus is a persistent illness brought about by metabolic irregularities in hyperglycemic pancreatic cells. Hyperglycemia can be brought about by an absence of insulin-producing beta cells in the pancreas (Type 1 diabetes mellitus) or inadequate insulin creation that does not work effectively (Type 2 diabetes mellitus). Present diabetes medication directs blood glucose levels in the systemic circulation to the typical levels. Numerous advanced prescription medicines have many negative results that can bring about unexpected severe issues during treatment of the bioactive compound from a different source that is beneficially affected by controlling and adjusting metabolic pathways or cycles. Moreover, a few new bioactive medications disengaged from plants have shown antidiabetic action with more noteworthy adequacy than the oral hypoglycemic agent that specialists have utilized in clinical treatment lately. Since bioactive mixtures are collected from familiar sources, they have a great activity in controlling diabetes mellitus. This study discusses bioactive compounds, their activity in managing diabetes mellitus, and their prospects. Though bioactive compounds have many health-beneficial properties, adequate clinical studies still need to acknowledge that they effectively manage diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Hiperglucemia , Células Secretoras de Insulina , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina
13.
Curr Med Chem ; 29(32): 5289-5314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35400321

RESUMEN

Dementia and frailty increase health adversities in older adults, which are topics of growing research interest. Frailty is considered to correspond to a biological syndrome associated with age. Frail patients may ultimately develop multiple dysfunctions across several systems, including stroke, transient ischemic attack, vascular dementia, Parkinson's disease, Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, cortico-basal degeneration, multiple system atrophy, amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease. Patients with dementia and frailty often develop malnutrition and weight loss. Rigorous nutritional, pharmacological, and non-pharmacological interventions generally are required for these patients, which is a challenging issue for healthcare providers. A healthy diet and lifestyle instigated at an early age can reduce the risk of frailty and dementia. For optimal treatment, accurate diagnosis involving clinical evaluation, cognitive screening, essential laboratory evaluation, structural imaging, functional neuroimaging, and neuropsychological testing is necessary. Diagnosis procedures best apply the clinical diagnosis, identifying the cause(s) and the condition(s) appropriate for treatment. The patient's history, caregiver's interview, physical examination, cognitive evaluation, laboratory tests, and structural imaging should best be involved in the diagnostic process. Varying types of physical exercise can aid the treatment of these disorders. Nutrition maintenance is a particularly significant factor, such as exceptionally high-calorie dietary supplements and a Mediterranean diet to support weight gain. The core purpose of this article is to investigate trends in the management of dementia and frailty, focusing on improving diagnosis and treatment. Substantial evidence builds the consensus that a combination of balanced nutrition and good physical activity is an integral part of treatment. Notably, more evidence-based medicine knowledge is required.


Asunto(s)
Enfermedad de Alzheimer , Fragilidad , Demencia Frontotemporal , Desnutrición , Anciano , Enfermedad de Alzheimer/diagnóstico , Fragilidad/diagnóstico , Fragilidad/terapia , Humanos , Pérdida de Peso
14.
Molecules ; 27(5)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35268815

RESUMEN

Obesity and diabetes are the most demanding health problems today, and their prevalence, as well as comorbidities, is on the rise all over the world. As time goes on, both are becoming big issues that have a big impact on people's lives. Diabetes is a metabolic and endocrine illness set apart by hyperglycemia and glucose narrow-mindedness because of insulin opposition. Heftiness is a typical, complex, and developing overall wellbeing worry that has for quite some time been connected to significant medical issues in individuals, all things considered. Because of the wide variety and low adverse effects, herbal products are an important hotspot for drug development. Synthetic compounds are not structurally diverse and lack drug-likeness properties. Thus, it is basic to keep on exploring herbal products as possible wellsprings of novel drugs. We conducted this review of the literature by searching Scopus, Science Direct, Elsevier, PubMed, and Web of Science databases. From 1990 until October 2021, research reports, review articles, and original research articles in English are presented. It provides top to bottom data and an examination of plant-inferred compounds that might be utilized against heftiness or potentially hostile to diabetes treatments. Our expanded comprehension of the systems of activity of phytogenic compounds, as an extra examination, could prompt the advancement of remedial methodologies for metabolic diseases. In clinical trials, a huge number of these food kinds or restorative plants, as well as their bioactive compounds, have been shown to be beneficial in the treatment of obesity.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Diabetes Mellitus/tratamiento farmacológico , Humanos , Insulina/uso terapéutico , Obesidad/tratamiento farmacológico
15.
J Integr Neurosci ; 21(1): 42, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164478

RESUMEN

Citrus limon L. is an ingenious alternative medication and has a broad scope in managing several health conditions as part of natural remedies. Recently, medicinal plants have witnessed incredible consideration worldwide in the field of neuroscience for remedial intervention. The present work has investigated the phytochemical compounds and neuropharmacological potential of the seed extract of Citrus limon as a step to partially validate its formulations as nutraceuticals using an in vivo model. Diverse phytochemical groups such as alkaloids, glycosides, flavonoids, tannins, gums, saponins, steroids were qualitatively identified through colorimetric methods utilizing standard compounds. The neuropharmacological properties were studied in Swiss albino mice with the sleep time induced by thiopental sodium taken as an end-point, in standard hole cross, hole board, and open-field experiments at varying doses of 50 and 100 mg/kg body weight. Phytochemical screening showed that alkaloids, flavonoids, saponins, tannins, steroids, and glycosides are present in the aqueous extract of the seed. The extracts demonstrated a significant reduction in sleep onset and enhanced the sleep duration in a dose-dependent manner in thiopental sodium-induced sleeping time, along with a marked decrease in unconstrained locomotors and explorative properties in both hole cross and open field tests. Moreover, in the hole board study, the extracts minimized the count of head dips observed in the treated mice. The results shown in this study demonstrate that Citrus limon extracts have neuropharmacological properties that can be further examined for their potential role as an adjuvant with conventional medications or nutraceuticals.


Asunto(s)
Citrus , Neurotransmisores/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Semillas , Sueño/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hipnóticos y Sedantes/farmacología , Locomoción/efectos de los fármacos , Modelos Animales , Tiopental/farmacología , Factores de Tiempo
16.
Biology (Basel) ; 11(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35053145

RESUMEN

Neurodegenerative diseases are a global health issue with inadequate therapeutic options and an inability to restore the damaged nervous system. With advances in technology, health scientists continue to identify new approaches to the treatment of neurodegenerative diseases. Lost or injured neurons and glial cells can lead to the development of several neurological diseases, including Parkinson's disease, stroke, and multiple sclerosis. In recent years, neurons and glial cells have successfully been generated from stem cells in the laboratory utilizing cell culture technologies, fueling efforts to develop stem cell-based transplantation therapies for human patients. When a stem cell divides, each new cell has the potential to either remain a stem cell or differentiate into a germ cell with specialized characteristics, such as muscle cells, red blood cells, or brain cells. Although several obstacles remain before stem cells can be used for clinical applications, including some potential disadvantages that must be overcome, this cellular development represents a potential pathway through which patients may eventually achieve the ability to live more normal lives. In this review, we summarize the stem cell-based therapies that have been explored for various neurological disorders, discuss the potential advantages and drawbacks of these therapies, and examine future directions for this field.

17.
Curr Pharm Des ; 28(12): 948-968, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34218774

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus responsible for the current global pandemic, which first emerged in December 2019. This coronavirus has affected 217 countries worldwide, most of which have enacted non-remedial preventive measures, such as nationwide lockdowns, work from home, travel bans, and social isolation. Pharmacists, doctors, nurses, technologists, and other healthcare professionals have played pivotal roles during this pandemic. Unfortunately, confirmed drugs have not been identified for the treatment of patients with coronavirus disease 2019 (COVID-19) caused by SARSCoV2; however, favipiravir and remdesivir have been reported as promising antiviral drugs. Some vaccines have already been developed, and vaccination is ongoing globally. Various nanotechnologies are currently being developed in many countries for preventing SARS-CoV-2 spread and treating COVID-19 infections. In this article, we present an overview of the COVID-19 pandemic situation and discuss nanotechnology-based approaches and investigational therapeutics for COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Antivirales/uso terapéutico , Control de Enfermedades Transmisibles , Humanos , Nanotecnología , Pandemias/prevención & control , ARN Viral , SARS-CoV-2
18.
Antibiotics (Basel) ; 10(9)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34572660

RESUMEN

Natural products have been known for their antimicrobial factors since time immemorial. Infectious diseases are a worldwide burden that have been deteriorating because of the improvement of species impervious to various anti-infection agents. Hence, the distinguishing proof of antimicrobial specialists with high-power dynamic against MDR microorganisms is central to conquer this issue. Successful treatment of infection involves the improvement of new drugs or some common source of novel medications. Numerous naturally occurring antimicrobial agents can be of plant origin, animal origin, microbial origin, etc. Many plant and animal products have antimicrobial activities due to various active principles, secondary metabolites, or phytochemicals like alkaloids, tannins, terpenoids, essential oils, flavonoids, lectins, phagocytic cells, and many other organic constituents. Phytocomplexes' antimicrobial movement frequently results from a few particles acting in cooperative energy, and the clinical impacts might be because of the direct effects against microorganisms. The restorative plants that may furnish novel medication lead the antimicrobial movement. The purpose of this study is to investigate the antimicrobial properties of the phytocomplexes and natural extracts of the plants that are ordinarily being utilized as conventional medications and then recommended the chance of utilizing them in drugs for the treatment of multiple drug-resistant disease.

19.
Curr Gene Ther ; 21(3): 216-229, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33655857

RESUMEN

Lamin A/C encoded by the LMNA gene is an essential component for maintaining the nuclear structure. Mutation in the lamin A/C leads to a group of inherited disorders is known as laminopathies. In the human body, there are several mutations in the LMNA gene that have been identified. It can affect diverse organs or tissues or can be systemic, causing different diseases. In this review, we mainly focused on one of the most severe laminopathies, Hutchinson-Gilford progeria syndrome (HGPS). HGPS is an immensely uncommon, deadly, metameric ill-timed laminopathies caused by the abnormal splicing of the LMNA gene and production of an aberrant protein known as progerin. Here, we also presented the currently available data on the molecular mechanism, pathophysiology, available treatment, and future approaches to this deadly disease. Due to the production of progerin, an abnormal protein leads to an abnormality in nuclear structure, defects in DNA repair, shortening of telomere, and impairment in gene regulation which ultimately results in aging in the early stage of life. Now some treatment options are available for this disease, but a proper understanding of the molecular mechanism of this disease will help to develop a more appropriate treatment which makes it an emerging area of research.


Asunto(s)
Regulación de la Expresión Génica , Lamina Tipo A/fisiología , Progeria/fisiopatología , Progeria/terapia , Núcleo Celular/metabolismo , Reparación del ADN , Silenciador del Gen , Humanos , Mutación , Fenotipo , Telómero/fisiología
20.
Molecules ; 27(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35011465

RESUMEN

Inflammation is a natural protective mechanism that occurs when the body's tissue homeostatic mechanisms are disrupted by biotic, physical, or chemical agents. The immune response generates pro-inflammatory mediators, but excessive output, such as chronic inflammation, contributes to many persistent diseases. Some phenolic compounds work in tandem with nonsteroidal anti-inflammatory drugs (NSAIDs) to inhibit pro-inflammatory mediators' activity or gene expression, including cyclooxygenase (COX). Various phenolic compounds can also act on transcription factors, such as nuclear factor-κB (NF-κB) or nuclear factor-erythroid factor 2-related factor 2 (Nrf-2), to up-or downregulate elements within the antioxidant response pathways. Phenolic compounds can inhibit enzymes associated with the development of human diseases and have been used to treat various common human ailments, including hypertension, metabolic problems, incendiary infections, and neurodegenerative diseases. The inhibition of the angiotensin-converting enzyme (ACE) by phenolic compounds has been used to treat hypertension. The inhibition of carbohydrate hydrolyzing enzyme represents a type 2 diabetes mellitus therapy, and cholinesterase inhibition has been applied to treat Alzheimer's disease (AD). Phenolic compounds have also demonstrated anti-inflammatory properties to treat skin diseases, rheumatoid arthritis, and inflammatory bowel disease. Plant extracts and phenolic compounds exert protective effects against oxidative stress and inflammation caused by airborne particulate matter, in addition to a range of anti-inflammatory, anticancer, anti-aging, antibacterial, and antiviral activities. Dietary polyphenols have been used to prevent and treat allergy-related diseases. The chemical and biological contributions of phenolic compounds to cardiovascular disease have also been described. This review summarizes the recent progress delineating the multifunctional roles of phenolic compounds, including their anti-inflammatory properties and the molecular pathways through which they exert anti-inflammatory effects on metabolic disorders. This study also discusses current issues and potential prospects for the therapeutic application of phenolic compounds to various human diseases.


Asunto(s)
Fenoles/química , Fenoles/farmacología , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antihipertensivos/química , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Disponibilidad Biológica , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Manejo de la Enfermedad , Evaluación Preclínica de Medicamentos , Evaluación del Impacto en la Salud , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Fenoles/uso terapéutico , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...